

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

X-ray structural study of intermetallic alloys RT_2 Si and RTSi₂ (R=rare earth, T=noble metal)

Alexander Gribanov^{a,b,*}, Andriy Grytsiv^a, Peter Rogl^a, Yurii Seropegin^b, Gerald Giester^c

^a Institute of Physical Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Wien, Austria

^b Chemistry Department of the Moscow State University, Leninskie Gory, GSP-1, 119991 Moscow, Russia

^c Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, A-1090 Wien, Austria

ARTICLE INFO

Article history: Received 30 November 2009 Received in revised form 17 March 2010 Accepted 27 March 2010 Available online 2 April 2010

Keywords: Ternary silicides RTSi₂ RT₂Si Single crystal X-ray diffraction Powder X-ray diffraction

ABSTRACT

Two series of intermetallic alloys, RT_2Si and $RTSi_2$, have been synthesized from stoichiometric compositions. The crystal structures of $EuPt_{1+x}Si_{2-x}$ (CeNiSi₂-type), Celr₂Si (new structure type), YbPd₂Si and YbPt₂Si (both YPd₂Si-type) have been elucidated from X-ray single crystal CCD data, which were confirmed by XPD experiments. The crystal structures of LaRh₂Si and Lalr₂Si (Celr₂Si-type), {La,Ce,Pr,Nd}AgSi₂ (all TbFeSi₂-type), and EuPt₂Si (inverse CeNiSi₂-type) were characterized by XPD data. $RT_2Si/RTSi_2$ compounds were neither detected in as-cast alloys $Sc_{25}Pt_{50}Si_{25}$, $Eu_{25}Os_{25}Si_{50}$ and $Eu_{25}Sh_{25}Si_{50}$ nor after annealing at 900 °C. Instead, X-ray single crystal data prompted $Eu_2Os_3Si_5$ ($Sc_2Fe_3Si_5$ -type) and $EuRh_{2+x}Si_{2-x}$ (x=0.04, ThCr₂Si₂-type) as well as a new structure type for $Sc_2Pt_3Si_2$ (own type).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The discovery of heavy fermion superconductivity in compounds with non-centrosymmetric crystal structures particularly in CePt₃Si [1], CeRhSi₃ [2] and CeIrSi₃ [3] has spurred increased interest also for the alloy series with stoichiometries *RT*₂Si and *RT*Si₂. A variety of interesting properties arise from the competition between the RKKY and Kondo interactions of the localized 4*f* electrons with conducting electrons at the Fermi-level. Hitherto known examples are as follows: CePd₂Si [4], CePt₂Si [5], a heavy fermion ground state in CeRh₂Si [6], a Kondo-lattice exhibiting magnetic order below 2.1 K in YbPd₂Si [7], heavy-fermion behavior for CePtSi₂ [8], valence fluctuations in CeRhSi₂ and CeIrSi₂ [9], heavy-fermion ferromagnetism in CeRuSi₂ [10], nonmagnetic valence fluctuations in CeNiSi₂ [11] and a spinglass-like magnetic behavior in CePdSi₂ [12,13].

For RT_2Si and $RTSi_2$ compounds a variety of structure types are known: orthorhombic CeNiSi₂-type (space group *Cmcm*) [14] and its derivative TbFeSi₂-type (space group *Cmcm*) [15,16], orthorhombic YIrGe₂-type (space group *Immm*) [17], monoclinic NdRuSi₂-type (space group $P2_1/m$) [18,19], tetragonal HfCuSi₂type (space group P4/nmm) [20] and the TiMnSi₂-type (space group *Pbam*) [21]. When T-atoms and silicon atoms exchange their sites in CeNiSi₂ a site exchange variant is obtained resulting in a formula *RT*₂Si. Hitherto known *RT*₂Si compounds crystallize either in the inverse CeNiSi₂-type or in the YPd₂Si-type (ordered Fe₃C-type, space group *Pnma*) [22].

Despite of the large volume of experimental data in the literature for intermetallics RT_2X and RTX_2 , the role of transitional metals and of components X in the formation of ground states and crystal structures is not fully understood. Table 1 summarizes data on crystal structures and physical properties of the hitherto known compounds of these series. The present work is a continuation of our recent investigations of the RT_2S series (reported in [5,7]) and extends to the search for new RT_2S and $RTSi_2$ compounds particularly in the alloys $Eu_{25}Pt_{50}Si_{25}$, $Eu_{25}Pt_{25}Si_{50}$, $La_{25}Rh_{50}Si_{25}$, $La_{25}Ir_{50}Si_{25}$, $Ce_{25}Ir_{50}Si_{25}$, $La_{25}Pt_{50}Si_{25}$, $Fu_{25}Pt_{50}Si_{25}$, $Eu_{25}OS_{25}Si_{50}$, $Pr_{25}Ag_{25}Si_{50}$, $Nd_{25}Ag_{25}Si_{50}$, $Yb_{25}Pd_{50}Si_{25}$, Yb_{25} $Pt_{50}Si_{25}$, $Eu_{25}OS_{125}$, $Eu_{25}OS_{25}Si_{50}$, $Eu_{25}Rh_{25}Si_{50}$ (at%) with the aim to elucidate their crystal structures.

2. Experimental techniques

Alloys of 1 g each were synthesized by standard arc-melting from high-purity elements (>99.9 mass%) on a water-cooled copper crucible in an argon environment starting from nominal compositions 1:2:1 or 1:1:2. To ensure complete fusion, all alloys were re-melted three times. Eu- and Yb-containing alloys were prepared with excess of 1 and 3 mass% of the rare-earth element to compensate losses in evaporation. The as-cast alloys were vacuum-sealed in guartz tubes and annealed at temperatures in

^{*} Corresponding author at: Chemistry Department of the Moscow State University, Leninskie Gory, GSP-1, 119991 Moscow, Russia.

E-mail addresses: avgri@mail.ru, grav@general.chem.msu.ru (A. Gribanov).

^{0022-4596/\$ -} see front matter \circledcirc 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2010.03.038

the range 800-1050 °C for 7-20 days before being quenched in cold water. X-ray powder diffraction (XPD) patterns were collected employing a Guinier-Huber image plate system with CuK α_1 radiation (λ =0.15406 nm) (8° < 2 θ < 100°) with Ge as internal standard ($a_{Ge}=0.56579$ nm). Lattice parameters were derived using program STOE-WinXpow [23]. Quantitative X-ray Rietveld refinements were performed with the FULLPROF program [24,25], employing internal tables for X-ray atomic form factors. For several intermetallics (Celr₂Si, EuPtSi₂, YbPt₂Si, YbPd₂Si, Eu₂Os₃Si₅, Sc₂Pt₃Si₂ and EuRh₂Si₂) single crystals were isolated from mechanically crushed alloys and were pre-selected on an AXS-GADDS texture goniometer. Unit cell dimensions and Laue symmetry of the structures were determined prior to X-ray intensity data collection on a four-circle Nonius Kappa diffractometer equipped with a CCD area detector and employing graphite monochromated MoK α radiation ($K\alpha_1 + K\alpha_2$, $\lambda = 0.071073$ nm). Orientation matrix and unit cell parameters were derived using program DENZO [26]. No absorption corrections were made because of the rather regular crystal shape and small dimensions of the investigated specimens. The structures were solved by direct methods and refined with the SHELXL-97 program [27]. Atom parameters were standardized using program *Structure Tidy* [28].

3. Results and discussion

In the present investigation crystal structures have been determined for 11 ternary compounds with stoichiometry RT_2Si or $RTSi_2$, namely: EuPt_2Si, EuPtSi_2, LaRh_2Si, LaIr_2Si, CeIr_2Si, LaAgSi_2, CeAgSi_2, PrAgSi_2, NdAgSi_2, YbPd_2Si, YbPt_2Si. In the alloys Sc_25Pt_50Si_25, Eu_25Os_25Si_50, Eu_25Rh_25Si_50 no corresponding RT_2Si or $RTSi_2$ phases were detected. Nevertheless the crystal structures of novel compounds Sc_2Pt_3Si_2 and Eu_2Os_3Si_5, as well as of EuRh_2Si_2 (structure known before from powder data [29–31]) were determined on the basis of single crystal data.

fTable 1

Literature data of crystal structures and physical properties for selected compounds *RT*₂Si and *RT*Si₂.

Compound	Structure type (space group)	<i>a</i> (nm)	b (nm)	<i>c</i> (nm)	Ref.	Physical property	Ref.
CeRh ₂ Si CeRh _{1.88} Si _{1.12} CeRh _{2-x} Si _{1+x} 0.0 < x < 0.1[33]	CeNiSi ₂ -inverse (Cmcm) CeNiSi ₂ -inverse (Cmcm) CeIr ₂ Si (I4 ₁ /amd)	0.40413 0.40591 0.40521 0.40560	1.7730 1.7673	0.40675 0.40736 3.5556 3.5472	$ \begin{array}{c} [32]\\[33]\\x=0\ [33]\\x=0\ 1[33] \end{array} $	CW ($\mu_{\rm eff}$ =2.46 $\mu_{\rm B}$, $\Theta_{\rm p}$ = -70 K), $T_{\rm sg}$ ~1 K	[6]
YbPd ₂ Si	-	-	-	-	[43]	Kondo-compound	[43]
	YPd ₂ Si (Pnma)	7.1775	6.9335	5.4406	[7]	CW (μ_{eff} =4.39 μ_{B} , Θ_{p} = -19.5 K), T_{magn} =2.1 K	[7]
LaPt ₂ Si	CeNiSi ₂ - inverse (<i>Cmcm</i>)	0.41721	1.7894	0.42378	[5]	$\gamma = 5.5 \text{ mJ/mol } \text{K}^2, \Theta_D = 225 \text{ K}$	[5]
CePt ₂ Si	CeNiSi ₂ - inverse (<i>Cmcm</i>)	0.40987	1.8032	0.41677	[5]	CW (μ_{eff} =2.32 μ_{B} , Θ_{p} =-47 K), T_{magn1} =6.6 K, T_{magn2} =5.6 K	[5]
LaRhSi ₂	CeNiSi ₂ (Cmcm)	-	-	-	[44]	SC, <i>T</i> _c =3.42	[44]
CeRhSi ₂	CeNiSi ₂ (Cmcm)	-	-	-	[44]		
		0.42661	1.6758	0.41708	[9]	MV, <i>T</i> _{sf} =134	[9,45]
		0.4289	1.6805	0.4232	[45]	MV	[45]
		0.4310	1.674	0.421	[46]	Ce ^{+3.07}	[46]
$CeRh_{1-x}Si_{2+x}$		0.42629	1.67456	0.41731	x=0 [33]		
$0 \le x \le 0.32$		0.42582	1.67526	0.41773	x=0.15 [33]		
		0.42566(4)	1.6768(2)	0.41763(4)	x _{max} =0.32 [33]		
CePtSi ₂	CeNiSi ₂ (Cmcm)	0.4288	1.6718	0.4238	[8]	CW ($\mu_{\rm eff}$ =2.56 $\mu_{\rm B}$, $\Theta_{\rm p}$ = – 17 K), HF, γ =1700 mJ/mol K ² at 1.25 K	[8]
		0.4288	1.6862	0.4248	[47]	$\gamma = 395.1 \text{ mJ/mol K}^2$	[47]
		0.428	1.686	0.424	[46]	AF, $T_{\rm N} \sim 1.5 {\rm K}$	[46]
CeIrSi ₂	CeNiSi ₂ (Cmcm)	0.42580	1.6754	0.41917	[9]	MV, <i>T</i> _{sf} =249	[9]
		0.4297	1.6754	0.4190	[12]	MV	[12]
		0.4274	1.6745	0.4182	[47]	MV	[47]
LaIrSi ₂	CeNiSi ₂ (Cmcm)	-	-	-	[44]	SC, $T_c = 2.03$	[44]
		4.323	16.841	4.227	[12]		
CeAgSi ₂	Unknown	-	-	-	[38]		

CW—Curie–Weiss behavior; μ_{ef} —effective magnetic moment; Θ_p —paramagnetic Curie temperature; Θ_D —Debye temperature; T_{sg} —spin-glass transition; γ —Sommerfeld coefficient; SC—superconductivity; T_c —temperature of the superconductivity transition; T_{magn} —temperature of the magnetic transition; MV—mixed valence; T_{sf} —spin fluctuation temperature; AF—antiferromagnetic ordering; T_N —Neel temperature; HF—heavy fermion behavior.

Table 2.

Unit cell dimensions from XPD data for the compounds with the CeNiSi₂-type and related derivatives: LaRh₂Si, {La,Ce}Ir₂Si, EuPt₂Si, EuPt₅I₂, {La,Ce,Pr,Nd}AgSi₂.

Compound	Prototype (space group)	<i>a</i> (nm)	<i>b</i> (nm)	<i>c</i> (nm)	V(nm)
LaRh ₂ Si	CeIr ₂ Si (<i>I</i> 4 ₁ / <i>amd</i>)	0.41018(9)		3.552(1)	0.5976(4)
Celr ₂ Si	$\operatorname{Celr_2Si}(I4_1/amd)$	0.40680(4)		3.5399(4)	0.5858(1)
$\operatorname{Celr}_{2-x}\operatorname{Si}_{1+x}$	CeNiSi ₂ -inv. (Cmcm)	0.40680(4)	1.7648(1)	0.40658(4)	0.29190(5)
In the sample Ce ₂₅ Ir ₄₈ Si ₂₇ (at%)					
LaIr ₂ Si	CeIr ₂ Si (I4 ₁ /amd)	0.41284(2)		3.5297(2)	0.60160(6)
EuPt ₂ Si	CeNiSi ₂ -inv. (Cmcm)	0.41580(5)	1.7793(3)	0.41704(6)	0.30854(5)
$EuPt_{1+x}Si_{2-x} (x=0)$	CeNiSi ₂ (Cmcm)	0.43522(3)	1.69787(11)	0.41513(3)	0.30676(3)
LaAgSi ₂	TbFeSi ₂ (Cmcm)	0.43160(7)	1.7533(3)	0.42742(6)	0.3235(1)
CeAgSi ₂	TbFeSi ₂ (Cmcm)	0.42528(2)	1.75492(8)	0.42326(2)	0.31589(4)
PrAgSi ₂	TbFeSi ₂ (Cmcm)	0.42244(7)	1.7522(4)	0.42164(10)	0.3121(1)
NdAgSi ₂	TbFeSi ₂ (Cmcm)	0.41991(4)	1.7498(2)	0.42015(4)	0.30871(5)

Table 3

X-ray crystallographic data and structure refinement for EuPt_{1+x}Si_{2-x} (x=0.075), CeIr₂Si and CeAgSi₂ standardized with program Structure Tidy [28].

Parameter	EuPt _{1+x} Si	2-x		Celr ₂ Si			CeAgSi ₂								
Alloy composition (at%)	Eu25Pt25S	5i50		Ce25Ir50S	i25		Ce25Ag25Si50								
Crystal size (µm)	$50 \times 50 \times$	50		30 × 30 ×	30		powder								
Space group	Cmcm, or	igin at inv. C	entre	$I4_1/amd$	origin at inv.	entre	<i>Cmcm</i> , origin at inv. centre								
Prototype	CeNiSi ₂	0		Celr ₂ Si	0		TbFeSi2								
Pearson symbol	oC16			tI32			0016								
Lattice parameters (nm) ^a	a = 0.435	67(2)		a=0.406	98(1)		a = 0.42	531(4)							
Lattice parameters (min)	h=1.698	99(9)		u=0.100	56(1)		b=1.75	51(2)							
	c = 0.415	17(2)		c = 3540	85(10)		c = 0.42	331(4)							
Cell volume (nm^3)	0 307310	3)		0 58648(3)		0 31598	S(7)							
Chemical formula	FuPt	Si		CelroSi	3)		CeAgSi	5(7)							
Formula weight M	415 75	1.925		552.61			304 17	2							
Number of formula units in unit cell 7	415.75			8			4								
Calculated density (g/cm^3)				12 5 17			630								
Absorption coefficient μ , (mm^{-1})	69 516			105 865			0.55								
2θ range up to (°)	72.48			72 37			8 < 70	< 100							
Pofloctions in refinement	106 > 10	(E) of AAA		251 > 4	(E) of $A26$		124 rof								
Index range	$400 \ge 40$	7		JJI ≥ 40	(1°0) 01 430		124 101	lections							
index range	$-7 \le 11 \le$	- 70		$-0 \le n \le$. 0										
	$-27 \leq K$	≤ 20 < 6		$-4 \leq K \leq$	- 4										
Number of variables	20 212	≤ 0		$-JI \leq I \leq$	≤ J0		20								
	20			10			30 B 00	47 B 0.090							
$K = 2 F_0 - F_c /2 F_0 $	0.028			0.034			$R_{\rm F}=0.0$	$47, R_{\rm B} = 0.080$							
K _{Int}	0.018			0.030			$R_{\rm e}=0.0$	22							
WK_2	0.061			0.108			$K_{\rm WP}=0.$	079							
Goodness of fit, $S = \{\Sigma[w(F_0^2 - F_c^2)^2]/(n-p)\}^{1/2}$	1.196	、 、		1.903	`		$\chi^2 = 13.$	0							
Extinction (Zacharlasen)	0.0009(2)		0.0011(1)										
Atom parameters															
Atom site 1	4 Eu1 in	4c (0,y, 1/4);		8 Ce1 in	8e (0,1/4,z);		4 Ce1 in 4c (0,y,1/4)								
	y = 0.3943	35(3)		z = 0.1995	51(2)		y = 0.40204(3)								
	1 00			1.00											
Occupation	1.00			1.00			1.00								
U _{eq.}	0.0049(2)		0.0043(2)		$B_{\rm iso} = 2.43(3)$								
Atom site 2	4 Pt1 in -	4c(0.v.1/4);		4 Ir1 in 4	4a (0.3/4.1/8):		4 Ag1 in $4c(0,y,1/4)$								
	v = 0.179	69(3)					y=0.74844(4)								
	9						5								
Occupation	1.00			1.00			1.00								
U _{eq.}	0.0072(2)		0.0017(2)		$B_{\rm iso} = 1.95(9)$								
Atom site 3	4 Si1 in 4	4c (0.v.1/4):		4 Ir2 in 4	4b(0.1/4.3/8):		4 Si1 in	4c(0.v.1/4)							
	v = 0.748	1(2)			(-,-,-,-,-,,		y = 0.0334(2)								
	<i>y</i>	-(-)					y=0.0334(2)								
Occupation	1.00			1.00			1.00								
U _{eq.}	0.0055(6))		0.0017(2)		$B_{\rm iso} = 1.11(8)$								
Atom site 4	4 Si2/Pt i	n 4c (0 v 1/4))•	8 Ir3 in 8	Re(0.1/4.7)		4 Si2 in 4c (0,y,1/4)								
Atom site 1	v = 0.0349	9(2)	,	z=0.0219	91(2)		y=0.1621(2)								
	<i>j</i> = 0.05 h	5(2)		2-010211	01(2)		5								
Occupation	0.925(3)	Si+0.075 Pt		1.00			1.00								
U _{eq.}	0.0095(6)		0.0062(2)		$B_{\rm iso} = 1.82(3)$								
Atom site 5				9 Gil in ($P_{0}(0,1/4,z)$										
Atom site 5				7_0.089	Se(0, 1/4, 2),										
				2=0.088	0(1)										
Occupation				1.00											
U _{eq.}				0.0030(7)										
		5.00	2.02		7.05	C 20									
Residual density; e/A ³ max; min		5.60	- 3.62		7.95	-6.29									
Interatomic distances,	Eu1-	2 Si1	0.3188	Ce1 -	4 Ir3	0.3051	Ce1	2 Si1	0.3137						
nm (eds < 0.0003 nm)		2 Si2	0.3232		4 Si1	0.3179		4 Si2	0.3205						
		4 Si2	0.3240		2 Ir3	0.3273		4 Si1	0.3207						
		4 Pt1	0.3261		2 Ir1	0.3332		2 Ag1	0.3385						
		2 Si1	0.3305		2 Ir2	0.3332		2 Ag1	0.3434						
	Pt1-	1 Pt1	0.3647	Ir1-	4 Si1	0.2408	Si2	1 Si1 0.2258							
		2 Si1	0.2412		4 Ir2	0.2878		2 Ag1	0.2611						
		1 Si2	Si2 0.2460		4 Ce1	0.3332		2 Ag1	2 Ag1 0.2635						
		2 Si1	0.2469	Ir2-	4 Si1	0.2408		4 Ce1	0.3205						
	Si1-	4 Eu1	0.3261		4 Ir1	0.2878	Si1	1 Si2	Si2 0.2258						
		1 Eu1	0.3647		4 Ce1	0.3332		2 Si1	ii1 0.2420						
		2 Pt1	0.2412	Ir3-	1 Si1	0.2363		0.3137							
		2 Pt1	0.2469		2 Ir3	0.2559		4 Ce1	1 0.3207						
		4 Si1	0.3010		4 Ce1	0.3051	Ag1	2 Si2	0.2611						
	Si2-	2 Eu1	0.3188		2 Ce1	0.3273		2 Si2	0.2635						
		2 Eu1	0.3305	Si1-	1 Ir3	0.2362		4 Ag1	0.3001						

Table 3 (continued)

Parameter	$EuPt_{1+x}Si_{2-x}$		CeIr ₂ Si		CeAgSi ₂						
	2 Si2 1 Pt1	0.2390 0.2460		2 Ir1 2 Ir2 4 Ce1	0.2408 0.2407 0.3179	2	2 Ce1 2 Ce1	0.3385 0.3434			

For Rietveld refinement of CeAgSi2 (XPD experiment).

$$\begin{split} R_{\rm F} &= \sum_{hkl} |F_{hkl}(obs) - F_{hkl}(calc)| / \sum_{hkl} |F_{hkl}(obs)| \\ R_{\rm B} &= \sum_{hkl} |I_{hkl}(obs) - I_{hkl}(calc)| / \sum_{hkl} |I_{hkl}(obs)| \\ R_{\rm e} &= \left[\frac{n - p}{\sum_{i} W_i y_i^2} \right]^{1/2} \end{split}$$

(n-p) is the number of degrees of freedom, *n* the number of the points in the refinement, *p* the number of refined parameters $\chi^2 = \sum_{i=1}^{n} w_i (y_i - y_{c,i}(\vec{\alpha}))^2$ where $\vec{\alpha} = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_p)$ —parameter vector.

Fig. 1. Rietveld refinement of the Celr₂Si XPD pattern performed without preferred orientation calculation (a) and with preferred orientation calculation along [116] axis (b) (modified March's function was used, $P_h=G_2+(1-G_2)\{(G_1 \cos \alpha_h)^2+(\sin^2 \alpha_h)/G_1\}^{-3/2}$, where G_1 and G_2 are refinable parameters and α_h a acute angle between the scattering vector and the normal to the crystallites. For Celr₂Si (b) $G_1=0.783(3)$ and $G_2=0$. At the bottom of the each figure (a) and (b) the Braggpositions 1, 2 and 3 correspond to Celr₂Si (main phase), Celr₃Si₂ (small amount) and Celr₂ (trace amount).

3.1. Compounds with CeNiSi₂-type and related structure types

This chapter covers compounds of the RT_2 Si and RTSi₂ series, which crystallize in the orthorhombic CeNiSi₂-type or its siteexchange variants, i.e. the TbFeSi₂-type [15] and the CeRh₂Si-type [32], as well as in a new tetragonal CeIr₂Si-type determined in the present work for the first time. Table 2 lists structure types and lattice parameters determined from XPD experiments for LaRh₂Si, CeIr₂Si, CeIr_{2-x}Si_{1+x}, LaIr₂Si, EuPt₂Si, EuPt₂Si₂, LaAgSi₂, CeAgSi₂, PrAgSi₂ and NdAgSi₂. The crystal structures of EuPtSi₂ and CeIr₂Si were derived from single crystal X-ray data and the corresponding crystallographic data are summarized in Table 3.

3.1.1. X-ray single crystal studies of $EuPt_{1+x}Si_{2-x}$ and $CeIr_2Si$

A single crystal from the as-cast alloy $Eu_{25}Pt_{25}Si_{50}$ (in at%), revealed orthorhombic symmetry with space group *Cmcm* and lattice parameters: a=0.43567(2) nm, b=1.69899(9) nm, c=0.41517(2) nm. The crystal structure was solved by direct methods yielding a partial random distribution of Pt and Si in one of the 4*c* sites yielding a chemical formula EuPt1+ xSi_{2-x} (x=0.075). Results of the refinement, which converged to R=0.028 with residual electron densities smaller than $\pm 5.6 e^{-}/Å^{3}$, are summarized in Table 3. Besides the detected atom disorder EuPt_{1+x}Si_{2-x} is isotypic with CeNiSi₂.

The X-ray intensity pattern of a suitable single crystal, taken from the alloy $Ce_{25}Ir_{50}Si_{25}$ (annealed at 850 °C) was completely indexed on a tetragonal unit cell (a=0.40698(1)nm and c=3.54085(10)nm) consistent with space group symmetry $I_{1/amd}$ (No. 141). The structure was solved by direct methods and refined to R=0.034 with residual electron densities smaller than $\pm 8.0 e^{-}/Å^3$, yielding a completely ordered atom arrangement (see Table 3). The same type of structure was detected from the XPD patterns of LaIr₂Si, CeRh₂Si and LaRh₂Si.

3.1.2. Tetragonal and orthorhombic variants of RT₂Si compounds

The new tetragonal CeIr₂Si-type has also been detected in our investigation of the Ce–Rh–Si system [33] forming at 800 °C a small homogeneous range CeRh_{2-x}Si_{1+x} ($0 \le x \le 0.1$). The previously reported orthorhombic CeRh₂Si compound [32] was observed in our investigation at the composition Ce₂₅Rh₄₇Si₂₈ with a corresponding formula CeRh_{1.88}Si_{1.12}. Despite the orthorhombic and tetragonal phases are very close to each other, they

Fig. 2. Projection of the crystal structure of Celr₂Si onto the XZ plane; the coordination polyhedra of the sites are outlined: Ce1 (a), Ir1 (b), Ir2 (c), Ir3 (d) and Si1 (e).

Fig. 3. Structure types of orthorhombic CeNiSi₂ and tetragonal CeIr₂Si shown as a packing of slabs of AlB₂ and BaAl₄ type. |AlB₂| and |AlB₂'| reflect different views on the AlB₂ unit cell (**a** and **a'**) and corresponding slabs. The slabs |BaAl₄| and |-BaAl₄| indicate two halves of the BaAl₄ unit cell (**b**) which are related via an inversion center. Packing of slabs in the CeNiSi₂-type (**c**). In the CeIr₂Si structure (**d**) AlB₂ and AlB₂' slabs are shifted by 1/2 **a** in comparison to (-AlB₂) and (-AlB₂') slabs.

Fig. 4. Unit cell parameters of RAgSi₂ as a function of rare-earths.

were clearly distinguished in XPD. Whilst the tetragonal structure is observed in both the as-cast and the annealed alloy $Ce_{25}Rh_{50}$ -Si₂₅, orthorhombic CeRh_{1.88}Si_{1.12} together with the tetragonal structure appeared in alloys with a higher content of silicon. Checking the Ce–Ir–Si system at 800 °C near composition $Ce_{25}Ir_{50}Si_{25}$ we found that besides the new tetragonal CeIr₂Si-type the orthorhombic CeNiSi₂-inverse type appeared in small amounts in both the as-cast and the alloy $Ce_{25}Ir_{48}Si_{27}$ annealed at 1050 °C. At the stoichiometric composition 1:2:1 the tetragonal

Fig. 5. Rietveld refinement of the CeAgSi₂.

CeIr₂Si-type phase is found as the main phase with a small amount of orthorhombic CeIr₃Si₂ and a trace of cubic CeIr₂. La-containing analogues LaRh₂Si and LaIr₂Si showed only the existence of the tetragonal structure in annealed samples La₂₅T₅₀Si₂₅ but no orthorhombic CeNiSi₂-inverse type could be discovered. A common peculiarity of all four XPD patterns of the R₂₅T₅₀Si₂₅ compounds (LaIr₂Si, CeIr₂Si, LaRh₂Si and CeRh₂Si) is a small but distinct disagreement between calculated and observed intensities (Fig. 1a). Preferred orientation (direction [116]) improved the Rietveld refinement from R_B =0.23 to R_B =0.12 but could not fully remove the discrepancies (Fig. 1b). Attempts to overcome preferred orientation in X-ray sample preparation using a powder-mixture with starch, special glass powder or a special powder support with sticky surface were unsuccessful.

To ensure the result of the crystal structure determination, a second single crystal from an independently prepared CeIr₂Si alloy was investigated but resulted in an identical set of atom parameters. Similarly, a Rietveld powder refinement of a mix of the two closely related crystal structures did not remove the disagreements in the powder intensities. In a recently published work of Muro et al. [6] on the CeRh₂Si phase, the authors confirmed from powder X-ray diffraction the presence of a main phase with inverse CeNiSi₂ structure besides some amount of secondary CeRh₃Si₂. Electron probe microanalysis measurements indicated a homogeneity region of about 5 at% assuming random Si/Rh replacement. A tetragonal structure was not detected.

3.1.3. Crystal chemistry of Celr₂Si

Fig. 2 shows the crystal structure of CeIr₂Si as a projection on the YZ plane and outlines the coordination polyhedra for all atom sites. Cerium atoms (Fig. 2a) are located in hexagonal prisms with two additional atoms (CN=14). Both Ir1 and Ir2 atoms have identical coordination polyhedra (Fig. 2b and c): each of these

Fig. 6. Comparison of the structure types of TbFeSi₂, CeNiSi₂, CeNiSi₂-inverse and CeIr₂Si. Simulated powder diffraction patterns of the hypothetical compounds constructed from Ce, Rh and Si atoms; unit cells with identical dimensions.

atoms is surrounded by four cerium atoms, four iridium atoms and four silicon atoms, which form a quadrangular prism with four additional apexes (CN=12). Ir3 atoms center triangular prisms with three additional atoms (CN=9; Fig. 2d). The coordination polyhedron of the Si atom is a quadrangular antiprism with one additional atom (CN=9, Fig. 2e).

The interrelation between orthorhombic CeNiSi₂ and tetragonal CeIr₂Si can be conceived from Fig. 3, where they are presented as a packing of slabs cut from AlB₂- and BaAl₄-types. The interatomic distances in the CeIr₂Si crystal structure reflect the sum of metal radii (Table 3).

3.1.4. Formation and crystal structure of {La,Ce,Pr,Nd}AgSi₂

Although RAgSi₂ phases were not reported in previous phase diagram work concerning the ternary systems Nd–Ag–Si at 600 °C [34], Ce–Ag–Si at 500 °C [35,36] and Pr–Ag–Si at 500 and 800 °C [37], a compound CeAgSi₂ was detected by Cordruwisch et al. [38] after annealing at 850 °C for 330 h. The crystal structure of it was not determined. In the present work we established the crystal structure of *R*AgSi₂ (*R*=La, Ce, Pr, Nd) to belong to the TbFeSi₂-type. For our preparation of *R*AgSi₂ samples different temperatures and annealing times were applied. A single-phase sample of CeAgSi₂ was obtained after 30 days exposure at 900 °C followed

Table 4

X-ray crystallographic data and structure refinement for YbPd₂Si and YbPt₂Si standardized with program Structure Tidy [28].

Parameter	YbPd ₂ Si			YbPt ₂ Si							
Alloy composition (at%) Crystal size (μm) Space group	$\begin{array}{l} Yb_{25}Pd_{50}Si_{25}\\ 50\times50\times50\\ Pnma\\ origin at inv. cent$	tre		$Yb_{25}Pt_{50}Si_{25}$ $50 \times 50 \times 50$ Pnma Origin at inv. cent	tre						
Prototype Pearson symbol Lattice parameters (nm)ª	YPd ₂ Si (ordered F oP16 a=0.71775(2) b=0.69335(2)	Fe ₃ C)		YPd_2Si (ordered F oP16 a=0.71841(2) b=0.69151(2)	e ₃ C)						
Cell volume (nm ³) Chemical formula Formula weight, <i>M</i> Number of formula units in unit cell, <i>Z</i>	c=0.34406(2) 0.27075(2) YbPd ₂ Si 413.93 4			c=0.34098(2) 0.26875(2) YbPt ₂ Si 591.31 4							
Calculated density (g/cm ³) Absorption coefficient, μ_{abs} (mm ⁻¹) 2θ range up to (°) Reflections in refinement Index range	10.155 47.468 72.54 639 $\leq 4\sigma(F_0)$ of 6 −11 $\leq h \leq 11$ 11 $\leq k \leq 11$	88		14.614 138.432 72.48 $628 \leqslant 4\sigma(F_0) \text{ of } 67$ $-11 \leqslant h \leqslant 11$ 11 < $k \leqslant 11$	'9						
Number of variables $R = \Sigma F_0 - F_c /\Sigma F_0 $ R_{int} wR_2 Goodness of fit, $S = \{\Sigma [w(F_c^2 - F_c^2)^2]/(n-p)\}^{1/2}$ Extinction (Zachariasen)	$-8 \le l \le 8$ 23 0.019 0.046 1.077 0.0016(3)			$- 11 \leqslant k \leqslant 11 \\ - 8 \leqslant l \leqslant 8 \\ 23 \\ 0.025 \\ 0.025 \\ 0.065 \\ 1.092 \\ 0.0018(2)$							
Atom parameters Atom site 1	4 Yb1 in $4c (x, 1/4)$ x = 0.02662(3) z = 0.63990(4) 1 00	4 <i>,z</i>);		4 Yb1 in $4c(x,1/4)$ x=0.02570(6) z=0.63381(8) 1 00	.,Z);						
U _{eq.}	0.00771(8)			0.0050(1)							
Atom site 2 Occupation Ueo.	8 Pd1 in $8d (x,y,z)$ x=0.17897(4) y=0.05161(4) z=0.09370(5) 1.00 0.00774(8)	;);		8 Pt1 in 8d (x,y,z) ; x=0.18212(4) y=0.05092(4) z=0.09147(5) 1.00 0.0051(1)							
Atom site 3	4 Si1 in $4c (x, 1/4, x=0.3779(2))$ z=0.3594(3)	,z);		4 Si1 in $4c(x,1/4,z)$; x=0.3801(4) z=0.3655(5)							
Occupation U _{eq.}	1.00 0.0071(2)			1.00 0.0050(5)							
Residual density; e/Å ³ max; min Interatomic distances, nm, (eds < 0.0003 nm)	Yb1-	1.83 1 Si1 1 Si1 2 Pd1 1 Si1 2 Pd1 2 Pd1	-2.70 0.2919 0.2926 0.2941 0.2947 0.2984 0.3031	Yb1-	5.58 1 Si1 1 Si1 1 Si1 2 Pt1 2 Pt1 2 Pt1 2 Pt1	-4.36 0.2897 0.2904 0.2931 0.2961 0.2965 0.3048					
	Pd1-	2 Pd1 2 Pd1 1 Si1 1 Si1 1 Si1 1 Pd1 1 Pd1 1 Vb1	0.3120 0.3452 0.2454 0.2483 0.2575 0.2751 0.2855 0.2941	Pt1-	2 Pt1 2 Pt1 1 Si1 1 Si1 1 Si1 1 Pt1 1 Pt1 2 Pt1	0.3078 0.3430 0.2455 0.2473 0.2580 0.2753 0.2885 0.2960					
	Si1-	1 Yb1 2 Pd1 1 Yb1 1 Yb1 2 Pd1 2 Pd1 2 Pd1 2 Pd1 1 Yb1 1 Yb1 1 Yb1	0.2984 0.2992 0.3031 0.3120 0.3452 0.2454 0.2483 0.2575 0.2919 0.2926 0.2947	Si1-	1 Yb1 1 Yb1 1 Yb1 1 Yb1 1 Yb1 2 Pt1 2 Pt1 2 Pt1 1 Yb1 1 Yb1 1 Yb1	0.2961 0.2965 0.3048 0.3078 0.3430 0.2455 0.2473 0.2580 0.2897 0.2904 0.2931					

Fig. 7. Rietveld refinements for YbPd₂Si (a) and YbPt₂Si (b).

Fig. 8. Rare-earth elements versus unit cell parameters a, b and c for compounds RPd_2Si (open circles) and RPt_2Si (filled circles) with the YPd_2Si type structure. The new values of $YbPd_2Si$ and $YbPt_2Si$ have been added to the $R(Pd,Pt)_2Si$ data [22].

by 28 days at 850 °C. La- and Pr-containing alloys were annealed at 850 °C (30 days), 950 °C (30 days) and 1050 °C (6 days). For the latter two alloys the higher temperature resulted in a higher content of the RAgSi₂ phase. The Nd-containing alloy revealed a complex microstructure: both as-cast and annealed samples besides NdAgSi₂ contained significant amounts of Nd(Ag,Si)₂ with the ThSi₂-type structure and unknown phase(s). The highest content of the NdAgSi₂ phase was observed after annealing at 850 °C (25 days). La- and Pr-containing compounds were obtained as the main phases in non-single phase samples. Nevertheless unit cell parameters were easily derived for LaAgSi₂, PrAgSi₂ and NdAgSi₂ (see Table 2). In all cases RAgSi₂ (also for short-term anneal in CeAgSi₂) the tetragonal solid solution phase based on binary RSi₂ was detected by XPD. Fig. 4 illustrates the unit cell parameters of RAgSi₂ versus rare-earths R reflecting the lanthanoid contraction from La to Nd. Unexpected behavior is observed for the *b* parameter in the La-containing compound but this effect is overlapped by increased *a* and *c* values, so that the cell volume of LaAgSi₂ closely follows the expected trend (Fig. 4). Crystal data from Rietveld refinement for CeAgSi₂ (see Fig. 5) are summarized in Table 3. CeAgSi₂ shows full atom order with all crystallographic sites fully occupied. Our results for CeAgSi2 are similar to those for TbFeSi2 reported as a fully ordered packing of atoms [15], in contrast to the data of [16] who observed a half occupation of transitional metals site from single crystal X-ray data for TbFe_{0.52}Si₂, HoFe_{0.5}Si₂ and DyFe_{0.5}Si₂.

3.1.5. Crystal chemistry of CeNiSi₂ and related types

In the orthorhombic CeNiSi₂-type with space group *Cmcm* four crystallographic sites 4c(0,y,1/4) are occupied with different y: y_1 \sim 0.40, $y_2 \sim$ 0.16, $y_3 \sim$ 0.04 and $y_4 \sim$ 0.75. Ce atoms in prototype CeNiSi₂ are in the position with $y_1 \sim 0.40$, T atoms (Ni) in position with y_2 , while the silicon atoms occupy two sites with y_3 and y_4 arriving at a completely ordered structure. In the structures of CeRh₂Si (as published in [32]) and TbFeSi₂ [15] rare-earth atoms are located in the position with $y_1 \sim 0.40$, as a common rare-earth site for the all three structure types. In CeRh₂Si (inverse structure) one can observe a site exchange: T atoms (Rh) are located in the former Si positions (in the sites with y_3 and y_4), and silicon atoms are in the former T positions. As a result, the content of transition metal increases by a factor of two, while simultaneously the silicon content decreases by a factor of two. In the TbFeSi₂ structure the transition metal (Fe) is located in the 4c site with $y_4 \sim 0.75$ and silicon atoms are in the sites with $y_2 \sim 0.16$ and $y_3 \sim 0.04$. Depending on the X-ray scattering power of the atoms involved, such simple changes in the original structure CeNiSi₂ may result in noticeable differences for the XPD patterns. Fig. 6 illustrates how the distribution of the atoms in the unit cell changes the powder pattern intensities. For convenient comparison the patterns were calculated for ideal structures with identical atoms types and for identical orthorhombic unit cells $(0.425 \times 1.675 \times 0.417 \text{ nm})$. For the tetragonal structure, however, the real values of the unit cell dimensions are used.

3.2. The crystal structures of YbPd₂Si and YbPt₂Si

The crystal structures of YbPd₂Si and YbPt₂Si were both determined from single crystal X-ray data confirmed by XPD measurements. Both phases crystallize with the YPd₂Si-type (ordered version of Fe₃C). The crystallographic parameters for YbPd₂Si and YbPt₂Si are given in Table 4. According to XPD both phases YbPd₂Si and YbPt₂Si were obtained in single-phase condition (see Fig. 7).

The lattice parameters for the newly detected compounds YbPd₂Si and YbPt₂Si perfectly fit to the dependency of the unit cell parameters vs the rare earths in the series RPd₂Si and RPt₂Si earlier described by Moreau et al. [22]. As can be seen in Fig. 8 no anomalies are obvious for the cell dimensions and cell volumes for YbPd₂Si and YbPt₂Si, therefore an Yb⁺³ ground state is inferred for the ytterbium atoms as recently reported for the low-temperature behavior of YbPd₂Si [7].

Table 5

X-ray crystallographic data and structure refinement for EuRh_{2+x}Si_{2-x} (x=0.04), Sc₂Pt₃Si₂ and Eu₂Os₃Si₅ standardized with program *Structure Tidy* [28].

$Lu_2 U_{3,1} U_{1,2} U_{1,2} U_{2,1} U_{2,1}$	
Alloy composition (at%) Eu ₂₅ Rh ₂₅ Si ₅₀ Sc ₂₅ Pt ₅₀ Si ₂₅ Eu ₂₅ Os ₂₅ Si ₅₀ Crystal size (μm) 30 × 30 × 30 50 × 40 × 20 30 × 30 × 30	
Space groupI4/mmm, origin at inv. CentrePbam, origin at inv. centreP4/mnc, origin at inv. centre	tre
Prototype Th Cr_2Si_2 S $c_2Pt_3Si_2$ S $c_2Fe_3Si_5$	
Pearson symbol 110 0^{P14} 1^{P40}	
$\begin{array}{c} a = 0.40920(2) \\ b = 0.86803(2) \\ \end{array} \qquad \qquad$	
c=1.02276(5) $c=0.40324(2)$ $c=5.7615(1)$	
Cell volume (nm ³) 0.171256(14) 0.22224(14) 0.66304(2)	
Chemical formula $EuRh_{2.035}Si_{1.965}$ $Sc_2Pt_3Si_2$ $Eu_2Os_3Si_5$	
Formula weight, M 416.58 731.37 1014.97	
Number of formula units in unit cell, Z 2 2 2 4	
Calculated density (g/cm ²) 8.0/9 10.930 10.168	
Absorption coefficient, μ_{abs} (mm ⁻¹) 28.18 9/.33 /6.71	
20 range up to (°) 55.73 72.60 72.53 72.60 72.53	
Reflections in refinement $113 \leqslant 4\sigma(r_o)$ of 121 $560 \leqslant 4\sigma(r_o)$ of 600 $849 \leqslant 4\sigma(r_o)$ of 860	
Index range $-6 \le h \le b$ $-10 \le h \le 10$ $-17 \le h \le 17$	
$-4 \leqslant k \leqslant 4 \qquad -14 \leqslant k \leqslant 14 \qquad -12 \leqslant k \leqslant 12$	
$-15 \leqslant z = -0 \leqslant z = 0 \qquad -3 \leqslant z = 0$	
Nullider of Vallables 10 24 20	
$A = 2[\Gamma_0] - [\Gamma_c] / 2[\Gamma_0]$ 0.02 0.037 0.054 0.057	
Nint 0.017 0.022 0.023 upp 0.060 0.006 0.079	
w_{R_2} 0.000 0.000 0.000 0.000 0.000 0.070 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Atom parameters	
Atom site I 2 EuT in 2a (0,0,0); 4 Sc1 in 4g (x,y,0); 8 EuT in 8h (x,y,0); $x=0.3910(2), y=0.1698(2)$ $x=0.26540(6), y=0.42662$	2(7)
Occupation 1.00 1.00 1.00	
U_{eq} 0.0046(3) 0.0046(2)	
Atom site 24 Rh1 in 4d (0,1/2,1/4);4 Pt1 in 4h (x,y,1/2); $x=0.19141(4), y=0.41333(3)$ 4 Os1 in 4d (0,1/2,1/4);	
Occupation 1.00 1.00 1.00	
U _{eq.} 0.0048(3) 0.0045(2) 0.0019(2)	
Atom site 3 4 Si1/Rh in $4e(0,0,z)$; $z=0.3708(2)$ 2 Pt2 in $2a(0,0,0)$; $x=0.14739(5), v=0.1260(0,0)$;	2(5)
Occupation 0.98(1) Si +0.02 Rh 1.00 1.00	
$U_{\rm eq.}$ 0.0072(8) 0.0039(2) 0.0030(1)	
Atom site 4 4 Si1 in $4h(x,y,1/2)$; 4 Si1 in $4e(0,0,z)$; x=0.0753(4), y=0.1501(3) $z=0.2378(10)$	
Occupation 100 100	
1.00 1.00 1.00	
$O_{eq.}$ $O_{0007(4)}$ $O_{150} = 0.007(5)$	
Atom site 5 8 Si2 in 8h (x,y,0); X=0.0251(4), y=0.3203(4)	1)
Occupation 1.00	
$U_{\rm eq.}$ U _{iso} =0.0017(6)	
Atom site 6	
x - 0 33 50 10 (xy,2), x - 0 33 52/5) v - 0 1805(5)
x = 0.332(1), y = 0.103(-7)	.,
Occupation 0.50	

A. Gribanov et al. / Journal of Solid State Chemistry 183 (2010) 1278-1289

-4.58	0.2819	0.3003	0.3033	0.3039	0.3068	0.3207	0.2421	0.2626	0.2881	0.2463	0.2463	0.2463	0.2473	0.2491	0.2491	0.2740	0.3039	0.2421	0.2463	0.2463	0.2560	0.2819	0.2463	0.2473	0.2560	0.2579	0.2584	0.2626	0.3003	0.3033
5.89	1 Si2	2 Si3	2 Si3	2 Si1	2 Si21	2 0s2	4 Si2	4 Si3	2 0s1	2 Si3	1 Si2	1 Si2	2 Si3	2 Si1	4 0s2	1 Si1	4 Eu1	2 0s1	1 0s2	1 0s2	2 Si3	1 Eu1	1 0s2	1 0s2	1 Si2	1 Si3	1 Si2	1 0s1	1 Eu1	1 Eu1
	Eu1-						0s1-			0s2-					Si1-			Si2-					Si3-							
-8.31	0.2807	0.2848	0.2868	0.2887	0.2948	0.3049	0.3184	0.3257	0.3466	0.2401	0.2499	0.2533	0.2859	0.2868	0.2910	0.3049	0.3184	0.2448	0.2887	0.2910	0.2948	0.2401	0.2448	0.2499	0.2533	0.2776	0.2807	0.2848		
9.14	2 Si1	2 Si1	2 Pt1	1 Pt2	1 Pt2	2 Pt1	2 Pt1	1 Sc1	2 Sc1	1 Si1	1 Si1	1 Si1	1 Pt1	2 Sc1	2 Pt2	2 Sc1	2 Sc1	4 Si1	2 Sc1	4 Pt1	2 Sc1	1 Pt1	2 Pt2	1 Pt1	1 Pt1	1 Si1	2 Sc1	2 Sc1		
	Sc1-									Pt1-								Pt2-				Si1-								
-1.68	0.3181	0.3275	0.2390	0.2894	0.3275	0.2390	0.2643	0.3181																						
3.90	8 Si1	8 Rh1	4 Si1	4 Rh1	4 Eu1	4 Rh1	1 Si1	4 Eu1																						
	Eu1-		Rh1-			Si1-																								
Residual density: e/Å ³ max: min	Interatomic distances,	nm, (eds < 0.0007 nm)																												

3.3. The crystal structures of Eu₂Os₃Si₅, Sc₂Pt₃Si₂ and EuRh₂Si₂

While searching for new compounds with stoichiometrics 1:1:2 and 1:2:1 single crystals of good quality were found for two new compounds, $Eu_2Os_3Si_5$, $Sc_2Pt_3Si_2$, as well as for $EuRh_2Si_2$, which was characterized earlier from powder data [29–31]. Results of the X-ray crystal refinements are presented in Table 5.

3.3.1. Eu₂Os₃Si₅

A single crystal, separated from the as-cast alloy Eu₂₅Os₂₅Si₅₀ (nominal composition in at%) revealed a tetragonal unit cell (a=1.07276(2) nm, c=0.57615(7) nm) and extinctions 0kl: (k+l=2n+1), hhl (l=2n+1), 00l (l=2n+1) and h00 (h=2n+1)consistent with space groups P4nc (No. 104) and P4/mnc (No. 128). Refinement of the structure in non-centrosymmetric P4nc (No. 104) space group resulted in Flack parameter value 0.5(2) and worse atomic displacement parameters, so we choose space group P4/mnc (No. 128). Direct methods yielded an atomic arrangement isotypic with the structure type of Sc₂Fe₃Si₅ [39]. Anisotropic atomic displacement parameters yielded an elongated ellipsoid for the Si atoms in 8g, which in the following was split (Fig. 9). Results of the refinement for Eu₂Os₃Si₅, which converged to R=0.034 with residual electron densities smaller than $\pm 5.9 e^{-}/Å^3$, are summarized in Table 5.

The Sc₂Fe₃Si₅-type structure was discussed by Chabot and Parthe [40] as an intergrowth of structural slabs of the CaBe₂Ge₂ structure and a second slab related to the BaNiSn₃ structure. Analyzing literature data for $R_2T_3Si_5$ compounds we found than in a few cases the 8g site (Si in x, x+1/2, 1/4) also revealed either enhanced values for Uiso or elongated thermal ellipsoids. For example in Sm₂(Ru_{1.72}Os_{1.28})Si₅ displacement of the Si atoms in 8g site reaches with $U_{eq} \times 100 = 1.39 (23) \text{\AA}^2$ a maximum value in the structure [41] and for stoichiometric Sm₂Ru₃Si₅ atom displacement of the Si atoms showed a long ellipsoid: $U_{11} = 0.019(1),$ $U_{22} = 0.019(1),$ $U_{33} = 0.0418(26),$ $U_{12}=0.0077(14), U_{13}=0.0174(13), U_{23}=0.0174(13)$ [42]. The splitting of the silicon site for Eu₂Os₃Si₅ from 8g into 16i with occupancy 0.5 resolved the problem with the ADP parameter. The interatomic distances in Eu₂Os₃Si₅ are in the range usually observed for intermetallic compounds (Table 5).

3.3.2. Sc₂Pt₃Si₂

A single crystal, broken from an as-cast alloy with composition Sc₂₅Pt₅₀Si₂₅ (at%), revealed orthorhombic symmetry with space group *Pbam* and lattice parameters: a=0.63488(2) nm, b = 0.86803(2) nm, c = 0.40324(2) nm) (Z=2). The structure was solved by direct methods yielding a fully ordered distribution of Sc, Pt and Si atoms. Results of the refinement, which converged to R=0.037 are summarized in Table 5. Scandium atoms are located in pentagonal prisms with five additional atoms (2 Pt and 3 Sc. coordination number CN=15). Each Pt1 atom is surrounded by 12 atoms (6 Sc1, 2 Pt2, 1 Pt1, 3 Si1) forming a distorted tetragonal prism with four additional atoms centering the lateral faces (CN=12). Pt2 atoms are located in quadrangular prisms with four additional Sc atoms (CN=12). Silicon atoms are located in quadrangular antiprisms (4 Sc+4 Pt) capped by two additional (Pt1+Si) atoms (CN=10). A perspective vision of the Sc₂Pt₃Si₂ crystal structure with the coordination polyhedra is shown in Fig. 10.

 $Sc_2Pt_3Si_2$ represents a new structure type, which can be described as a packing of triangular and quadrangular prisms around the Si1 and the Pt1 atoms, respectively (Fig. 11). XPD patterns of $Sc_{25}Pt_{50}Si_{25}$ and $Sc_{28.6}Pt_{42.8}Si_{28.6}$ (2:3:2) alloys reveal the $Sc_2Pt_3Si_2$ phase to be a secondary phase in both as-cast and

Fig. 9. Projections of the Eu₂Os₃Si₅ crystal structure on the planes XY and YZ.

Fig. 10. The crystal structure of $Sc_2Pt_3Si_2$ in perspective view along [001] and coordination polyhedra of the atoms.

Fig. 11. The crystal structure of $Sc_2Pt_3Si_2$ as a packing of triangular and quadrangular prisms projected on the *XY* plane.

annealed specimens. Moreover, the amount of $Sc_2Pt_3Si_2$ in the alloy $Sc_{28.6}Pt_{42.8}Si_{28.6}$ (2:3:2) noticeably decreased after annealing at 900 °C, so one can suppose this phase to be a high-temperature

phase. The interatomic distances in the Sc₂Pt₃Si₂ crystal structure are characterized by values typical for intermetallics (Table 5).

3.3.3. EuRh₂Si₂

The crystal structure of the EuRh₂Si₂ was re-determined on a single crystal taken from the surface of the as-cast alloy Eu₂₅Rh₂₅Si₅₀. EuRh₂Si₂ crystallizes in the tetragonal ThCr₂Si₂-type (space group *I*4/*mmm*, *Z*=2, lattice parameters *a*=0.40920(2) nm, *c*=1.02276(5) nm). The structure was refined with anisotropic atomic displacement parameters for all atoms down to *R*=0.023 with residual electron densities less than $\pm 3.9 \text{ e}^-/\text{Å}^3$. A statistical occupation of the 4*e* site by (0.98 Si +0.02 Rh) atoms was detected. The structure parameters are presented in Table 5. The result obtained in the present work confirmed the powder XRD data for EuRh₂Si₂ previously reported in the literature [29–31].

4. Conclusion

The unique crystal structure of the compounds CeIr₂Si, LaRh₂Si and LaIr₂Si was determined for the first time and can be presented as a packing of AlB₂- and BaAl₄-slabs. The CeIr₂Si-type is related to the CeNiSi₂-type. Other new representatives of this structural family, EuPt_{1+x}Si_{2-x} (CeNiSi₂-type), EuPt₂Si (inverse CeNiSi₂type) and four Ag-containing silicides LaAgSi₂, CeAgSi₂, PrAgSi₂ and NdAgSi2 (all of the TbFeSi2-type), were synthesized and studied by X-ray diffraction technique. The simple relations between orthorhombic CeNiSi2-type, inverse CeNiSi2-type and TbFeSi₂-type and their relationship with the new tetragonal Celr₂Si-type were illustrated along with the corresponding XPD patterns. X-ray single crystal CCD data of YbPd₂Si and YbPt₂Si revealed isotypism with the YPd₂Si-type (ordered version of Fe₃C). No RT₂Si/RTSi₂ compounds were detected in the Sc25Pt50Si25, Eu25Os25Si50 and Eu25Rh25Si50 alloys in which, however, the new compounds Sc₂Pt₃Si₂ (own type) and Eu₂Os₃Si₅ (Sc₂Fe₃Si₅-type) as well as EuRh₂Si₂ (ThCr₂Si₂-type) were detected and studied from X-ray single crystal data.

Acknowledgments

This research was supported by the Austrian National Science Foundation FWF Project P18054-Phy. The authors are grateful to the Russian Foundation of Basic Research for support of the Project No. 08-03-01072 and to the bilateral WTZ Austria–Russia, Project 17/2006.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jssc.2010.03.038.

References

- E. Bauer, G. Hilscher, H. Michor, C. Paul, E.W. Scheidt, A.V. Gribanov, Y.D. Seropegin, H. Noël, M. Sigrist, P. Rogl, Phys. Rev. Lett. 92 (2004) 027003/ 1–027003/4.
- [2] N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, T. Terashima, Phys. Rev. Lett. 95 (2005) 247004/1-247004/4.
- [3] I. Sugitani, Y. Ókuda, H. Shishido, T. Yamada, A. Thamizhavel, E. Yamamoto, T.D. Matsuda, Y. Haga, T. Takeuchi, R. Settai, Y. Onuki, J. Phys. Soc. Japan 75 (2006) 043703-1-043703-4.
- [4] J.M. Barandiaran, D. Gignoux, D. Schmitt, J.C. Gomez-Sal, Solid State Commun. 59 (1986) 223-225.
- [5] E. Bauer, G. Hilscher, H. Kaldarar, H. Michor, E.W. Scheidt, P. Rogl, A. Gribanov, Y. Seropegin, J. Magn. Magn. Mater. 310 (2007) e73–e75.
- [6] Y. Muro, S. Takahashi, K. Sunahara, K. Motoya, M. Akatsu, N. Shirakawa, J. Magn. Magn. Mater. 310 (2007) e40-e41.
- [7] E. Bauer, H. Kaldarar, H. Michor, M. Reissner, E. Royanian, E.W. Scheidt, P. Rogl, A. Gribanov, Y. Seropegin, Phys. B: Condens. Matter 403 (2008) 919–921.
- [8] W.H. Lee, K.S. Kwan, P. Klavins, R.N. Shelton, Phys. Rev. B 42 (1990) 6542–6545.
- [9] B. Chevalier, P. Rogl, K. Hiebl, J. Etourneau, J. Solid State Chem. 107 (1993) 327–331.
- [10] V.N. Duginov, V.G. Grebinnik, K.I. Gritsaj, T.N. Mamedov, V.G. Olshevsky, V.Y. Pomjakushin, V.A. Zhukov, I.A. Krivosheev, A.N. Ponomarev, V.N. Nikiforov, Y.D. Seropegin, M. Baran, H. Szymczak, Phys. Rev. B: Condens. Matter Mater. Phys. 55 (1997) 12343–12347.
- [11] V.K. Pecharsky, K.A. Gschneidner Jr., L.L. Miller, Phys. Rev. B 43 (1991) 10906–10914.
- [12] D.T. Adroja, B.D. Rainford, Phys. B: Condens. Matter 230-232 (1997) 762-765.
- [13] J.J. Lu, C. Tien, L.Y. Jang, C.S. Wur, Phys. B: Condens. Matter 305 (2001) 105–112.
- [14] O.I. Bodak, E.I. Gladyshevskii, Sov. Phys. Crystallogr. 14 (1970) 859-862.
- [15] V.I. Yarovetz, Y.K. Gorelenko, Vestn. L'vovsk. Univ., Ser. Khim. 43 (1981) 20-23 (in Russian).
- [16] L. Paccard, D. Paccard, J. Allemand, J. Less-Common Met. 161 (1990) 295–298.
- [17] M. Francois, G. Venturini, E. McRae, B. Malaman, B. Roques, J. Less-Common Met. 128 (1987) 249–257.
- [18] K. Cenzual, R.E. Gladyshevskii, E. Parthe, Acta Crystallogr. C 48 (1992) 225-228.
- [19] R. Welter, G. Venturini, B. Malaman, J. Alloys Compd. 185 (1992) 235-240.

- [20] L.S. Andrukhin, L.A. Lysenko, Y.P. Yarmolyuk, E.I. Gladyshevskii, Dopov. Akad. Nauk Ukr. RSR, Ser. A (1975) 645.
- [21] J. Steinmetz, G. Venturini, B. Roques, N. Engel, I. Chabot, E. Parthe, Acta Crystallogr. B 38 (1982) 2103–2108.
- [22] J.M. Moreau, J.L. Roy, D. Paccard, Acta Crystallogr. B 38 (1982) 2446-2448.
- [23] STOE WINXPOW (Version 1.06), Stoe & Cie GmbH, Darmstadt, Germany, 1999.
- [24] J. Rodriguez-Carvajal, Physica B 192 (1993) 55-69.
- [25] T. Roisnel, J. Rodriguez-Carvajal, Materials science forum, in: Proceedings of the European Powder Diffraction Conference (EPDIC7), 2000, p. 118.
- [26] Nonius Kappa CCD Program Package COLLECT, DENZO, SCALEPACK, SORTAV, Delft, Nonius, The Netherlands, 1998.
- [27] G.M. Sheldrick, Acta Crystallogr. A 64 (2008) 112-122.
- [28] E. Parthe, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Springer-Verlag, Berlin, Heidelberg, 1994.
- [29] I. Felner, I. Nowik, J. Phys. Chem. Solid 45 (1984) 419-426.
- [30] B. Chevalier, J.M.D. Coey, B. Lloret, J. Etourneau, J. Phys. C: Solid State Phys. 19 (1986) 4521–4528.
- [31] Z. Hossain, O. Trovarelli, C. Geibel, F. Steglich, J. Alloys Compd. 323-324 (2001) 396-399.
- [32] A.I. Tursina, A.V. Gribanov, Y.D. Seropegin, A.A. Novitskii, O.I. Bodak, J. Alloys Compd. 367 (2004) 146-148.
- [33] A. Lipatov, A. Gribanov, A. Grytsiv, S. Safronov, P. Rogl, J. Rousnyak, Y. Seropegin, G. Giester, J. Solid State Chem. 183 (2010) 829–843.
- [34] O.V. Zaplatynsky, Y.M. Prots, P.S. Salamakha, L.O. Muratova, O.I. Bodak, J. Alloys Compd. 232 (1996) L1–L4.
- [35] O. Bardin, O. Bodak, O. Protsyk, Z. Shpyrka, Visnyk Lviv. Univ., Ser. Khim. 40 (2001) 57–60.
- [36] B. Belan, O. Bodak, R. Gladyshevskii, I. Soroka, B. Kuzhel, O. Protsyk, I. Stets, J. Alloys Compd. 396 (2005) 212–216.
- [37] I.A. Savysyuk, Phase equilibria, crystal structures and electrical properties of compounds in the systems {Y,Pr}-Ag-{Si,Ge,Sn}, Ph.D. Thesis, University of Lviv, 2001.
- [38] E. Cordruwisch, D. Kaczorowski, P. Rogl, A. Saccone, R. Ferro, J. Alloys Compd. 320 (2001) 308–319.
- [39] Ya.P. Yarmoluyk, L.G. Aksel'rud, E.I. Gladyshevskii, Sov. Phys. Crystallogr. (Engl. Transl.) 22 (1977) 358.
- [40] B. Chabot, E. Parthe, J. Less-Common Met. 97 (1984) 285–290.
- [41] C. Rizzoli, O.L. Sologub, P.S. Salamakha, J. Alloys Compd. 337 (2002) L4-L7.
- [42] P. Salamakha, O. Sologub, G. Bocelli, L. Righi, J. Alloys Compd. 299 (2000) L6-L8.
- [43] O.L. Borisenko, O.I. Bodak, Y.D. Seropegin, V.N. Nikiforov, M.V. Kovachikova, Y.V. Kochetkov, Izv. Akad. Nauk SSSR. Metally 2 (199) 167–172 (in Russian).
- [44] B. Chevalier, P. Lejay, J. Etourneau, P. Hagenmuller, Mater. Res. Bull. 18 (1983) 315–330.
- [45] D.T. Adroja, B.D. Rainford, J. Magn. Magn. Mater. 119 (1993) 54-58.
- [46] J.J. Lu, M.K. Lee, Y.M. Lu, L.Y. Jang, J. Magn. Magn. Mater. 311 (2007) 614-617.
- [47] J.J. Lu, C. Tien, L.Y. Jang, Solid State Commun. 120 (2001) 29-33.